我们研究数据近似和优化中的关键工具之一:低分配颜色。正式地,给定有限集系统$(x,\ nathcal s)$,两颜色的$ \ chi的\ emph {vrionpancy}:x \ to \ to \ to \ { - 1,1 \} $定义为$ \ max_ {s \ in \ Mathcal s} | {\ chi(s)} | $,其中$ \ chi(s)= \ sum \ limits_ {x \ in s} \ chi(x)$。我们提出了一种随机算法,对于任何$ d> 0 $和$(x,\ mathcal s)$,带有双重粉碎功能$ \ pi^*(k)= o(k^d)$,返回带有预期的着色差异$ o \ left({\ sqrt {| x |^{1-1/d} \ log | \ mathcal s |}}}} \ right)$(此绑定是紧密的)时间$ \ tilde o \ left({{ | \ Mathcal S | \ CDOT | X |^{1/d}+| X |^{2+1/d}}} \ right)$,在$ o \ left的先前最佳时间(| \ Mathcal)改进s | \ cdot | x |^3 \ right)$至少为$ | x |^{2-1/d} $时,当$ | \ | \ Mathcal S | \ geq | x | $。该设置包括许多几何类别,有界双VC维度的家庭等。直接的结果,我们获得了一种改进的算法来构建子分数大小的$ \ varepsilon $ approximations。我们的方法使用原始偶重新升高,通过对随机更新的权重进行了改进的分析,并通过匹配度的匹配数低 - 计算几何形状的基本结构。特别是,我们获得了相同的$ | x |^{2-1/d} $ factor factor factor factor facter intherting the Match of crotsing number $ o \ left的施工时间({| x |^{1-1/d} } \ right)$,这是自1980年代以来的第一个改进。所提出的算法非常简单,这使得首次有可能具有近乎最佳差异的颜色,并且在高于$ 2 $的尺寸的抽象和几何套装系统中,对于抽象和几何设置系统的近似近似值。
translated by 谷歌翻译
Li,Long和Srinivasan对设定系统近似的基本结果已成为多个社区的关键工具,例如学习理论,算法,计算几何,组合学和数据分析。本文的目的是为有限设置系统提供模块化,独立的,直观的证明。我们假设的唯一成分是标准Chernoff的浓度结合。这使得更广泛的受众可以访问证明,读者不熟悉统计学习理论的技术,并可以在几何学,算法或组合学课程中进行单个独立的演讲中涵盖。
translated by 谷歌翻译